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Abstract. We present a method of measuring expectation values of quadrature moments of a multimode
field through two-level probe “homodyning”. Our approach is based on an integral transform formalism
of measurable probe observables, where analytically derived kernels unravel efficiently the required field
information at zero interaction time, minimizing decoherence effects. The proposed scheme is suitable for
fields that, while inaccessible to a direct measurement, enjoy one and two-photon Jaynes-Cummings inter-
actions with a two-level probe, like spin, phonon, or cavity fields. Available data from previous experiments
are used to confirm our predictions.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 03.67.Mn Entanglement production, characterization, and
manipulation – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

State reconstruction of a bosonic field is an important is-
sue in fundamentals of quantum physics that has been
studied extensively, both theoretically and experimentally,
in the last two decades [1]. Its main concern is to measure
either the density matrix of an unknown quantum field
state or, equivalently, any of its phase-space representa-
tions. Among them, Wigner function reconstructions seem
to be the most promising avenue for measuring completely,
for example, an intracavity microwave field [2] or the mo-
tion of a trapped ion [3]. In the case of a propagating
field, usually accessible to direct measurement, homodyne
techniques are currently used in the lab [4]. Typically, a
complete state reconstruction with standard techniques
demand great experimental efforts, is strongly affected by
decoherence mechanisms, and, frequently, the obtained
information exceeds our requirements. In those cases,
techniques for extracting efficiently the required partial
information are most welcomed and even necessary. The
problem is even harder when the field is not directly acces-
sible and a quantum probe has to be used for the purposes
of an indirect measurement [5]. Therefore, the following
question arises: how to derive accurately the expectation
value of a field observable, through an efficient measure
of a probe, with minimal resources and with an outcome
that is minimally affected by decoherence mechanisms? In
this article, we answer this question for the case of a mul-
timode bosonic field, interacting with a two-level probe,
by means of a practical integral transform method. These
conditions are naturally fulfilled by several physical sys-
tems, like a cavity field interacting with two-level atoms,
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the motion of an ion interacting, through laser coupling,
with two of its internal levels, or even several spins, in a
mode approximation, interacting with a single spin, like
in NMR or quantum dot systems.

We consider a general picture in which an inaccessible
bosonic field is measured through an interacting probe,
following the interaction Hamiltonian

H = �

∑

i,j

gi,j(pif
†
j + p†ifj), (1)

where pi and fj are probe and field operators, respectively,
and gi,j are coupling strengths. We postulate the existence
of an analytical kernel κ(τ) such that

〈F 〉 =
∫ ∞

−∞
κ(τ)〈P 〉(τ)dτ, (2)

where F and P are operators associated with field and
probe observables, respectively, and τ is the dimensionless
probe-field interaction time. Later, it will be clear why it is
possible to include a negative axis for τ in the integration
limits of equation (2). 〈P 〉(τ) will be replaced by experi-
mental measured data and, for the method to be useful,
we should be able to formally invert the integral transform
and derive an analytical expression for κ(τ). We will show
below that this inversion is possible for several important
field observables, like quadrature moments of a multimode
field, unravelling important information on squeezing and
entanglement. Note that we aim at measuring efficiently
partial field information without the requirement of full
state reconstruction, even though integral techniques can

R
ap

id
e 

N
ot

eR
apid N

ote



424 The European Physical Journal D

also provide us with complete Wigner function reconstruc-
tions [6].

We consider a two-level probe interacting with a single-
mode field through a resonant Jaynes-Cummings (JC)
Hamiltonian, in the interaction picture,

HJC = �g(σ†a+ σa†), (3)

where g is a coupling strength, {σ, σ†} are lowering and
raising probe operators, and {a, a†} are annihilation and
creation field operators. We assume that, given that the
initial probe-field density operator is ρin(0), we can mea-
sure, after a dimensionless interaction time τ ≡ gt, the
population of the excited probe level |e〉
P in

e (τ) ≡ Tr[ρ(τ)|e〉〈e|] = Tr[U(τ)ρin(0)U †(τ)|e〉〈e|], (4)

where |e〉〈e| = σ†σ and U(τ) = exp(−iτHJC/�g) is the
evolution operator. In equation (4), and throughout this
work, upper and lower indices stem from initial and mea-
sured probe states, respectively. We consider the initial
state ρ+φ = |+φ〉〈+φ|⊗ρf , where |±φ〉 = (|g〉±eiφ|e〉)/√2
are the eigenvectors of σφx = σ†eiφ+σe−iφ with σφx |±φ〉 =
±|±φ〉. When φ = 0, σφx turns into σx, the usual spin-1/2
Pauli operator. Replacing ρ+φ in equation (4) gives

P
+φ
e (τ) =

i

4

∞∑

n=0

sin(2τ
√
n+ 1)(eiφρn,n+1 − e−iφρn+1,n)

+
1
2

∞∑

n=0

(cos2(τ
√
n+ 1)ρn,n + sin2(τ

√
n+ 1)ρn+1,n+1),

(5)

where the initial field state ρf =
∑
n,m ρn,m|n〉〈m| has

been written in terms of its matrix elements. Through
the knowledge of P+φ

e (τ), we aim at measuring the field
quadratures Xφ = (ae−iφ + a†eiφ)/2 and Yφ = Xφ+π/2 =
(ae−iφ − a†eiφ)/2i with expectation values

〈Xφ〉 =
1
2

∞∑

n=0

√
n+ 1(eiφρn,n+1 + e−iφρn+1,n) (6)

〈Yφ〉 =
i

2

∞∑

n=0

√
n+ 1(eiφρn,n+1 − e−iφρn+1,n). (7)

We choose the kernel in equation (2) as an odd function,
κ(−τ) = −κ(τ), so that the integral of the second sum in
equation (5) vanishes, while the integral of the first sum
should reproduce equation (7). In consequence, replacing
operators P → |e〉〈e| and F → Yφ in equation (2), the
condition for this ansatz to be true is

∫ ∞

−∞
κ(τ)eiωnτdτ = iωn, (8)

where sin(2τ
√
n+ 1) has been rewritten in complex form

with wn = 2
√
n+ 1. The inverse Fourier transform of

equation (8) provides us with the kernel

κ(τ) =
i

2π

∫ ∞

−∞
e−iωnτωndωn = −δ′(τ), (9)

where δ′(τ) is the first derivative of a delta function. Note
that even if, physically, wn is a function of discrete n’s, it
can be treated formally as continuous for the sake of the
inverse transform. Then, equation (2) can be written as

〈Yφ〉 = −
∫ ∞

−∞
δ′(τ)P+φ

e (τ)dτ, (10)

yielding 〈Yφ〉 =
d

dτ
P

+φ
e (τ)

∣∣∣∣
τ=0

, (11)

where the continuity of the first derivative of P+φ
e (τ) at

τ = 0 has been considered. Similarly,

〈Xφ〉 = 〈Yφ− π
2
〉 =

d

dτ
P

+φ− π
2

e (τ)
∣∣∣∣
τ=0

. (12)

Equations (11) and (12) show that 〈Xφ〉 and 〈Yφ〉 are fully
contained in the first derivative, at τ = 0, of the measured
probe population, offering a remarkably simple way of ob-
taining quadrature information. Note that knowing the
first derivative at τ = 0 requires knowing the function in
a vicinity. However, no necessity of full state reconstruc-
tion or lengthy time integration over Rabi oscillations are
needed, in contrast to standard methods. Needless to say,
the influence of decoherence is minimized.

Induced by the structure of equation (5), and aiming
at cancelling the population while keeping the off-diagonal
(phase) information, we could find a similar result by sub-
tracting rotated populations

P
+φ
e (τ) − P

−φ
e (τ) =

i

4

∞∑

n=0

sin(2τ
√
n+ 1)(eiφρn,n+1 − e−iφρn+1,n). (13)

Following a similar procedure as before, we can write

〈Yφ〉 =
1
2

(
d

dτ
P

+φ
e (τ) − d

dτ
P

−φ
e (τ)

)∣∣∣∣
τ=0

. (14)

This result has evident resemblance to the known tech-
nique of field homodyning [4]. There, an unknown field is
mixed in a 50-50 beam splitter with a local oscillator, and
the difference of field intensities (rate of photon clicks)
at the output gives us quadrature information. Based on
this similarity, the proposed method could be called after
two-level probe “homodyning”.

Xφ and Yφ happen to be relevant observables in a wide
range of physical systems where current experiments enjoy
probe rotations and JC-like interactions, like cavity QED
(CQED), trapped ions, BEC, and different solid-state sys-
tems. In CQED, the quadrature information can be ob-
tained by sending an excited atom through a Ramsey zone
before crossing the cavity mode [7], and finally measuring
the population of the excited state at the cavity output.
For trapped ions, 〈X〉 and 〈Y 〉 represent, literally, expec-
tation values of position and momentum operators, that
will be obtained by measuring the internal state statistics,
where the efficiency can reach ∼100%, after a JC-like side-
band excitation [8]. In the case of solid-state devices, there
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are several systems enjoying two-level probes interacting
through JC interactions with cavity, phonon or spin fields.
It is noteworthy to mention that in all these examples a
probe is needed due to the lack of a direct measurement.

In the rest of this article, for the sake of simplicity, we
will use the language of cavity QED, where a two-level
atom probes an intracavity electromagnetic field.

Another important field observable that can be ob-
tained straightforwardly with a JC interaction is the mean
photon number 〈n〉 = 〈a†a〉. Considering the initial state
ρe = |e〉〈e| ⊗ ρf , we can derive the kernel

κ̄(τ) = −δ′′(τ) (15)

for measuring

〈n〉 =
1
2
d2P e

g (τ)
d2τ

∣∣∣
τ=0

− 1. (16)

Note that measuring 〈n〉 does not require Ramsey zones
for rotating the atom, as was the case before. Given the
available experimental data, expression in equation (16) is
the only one that could be presently tested. For example,
using the experimental data associated with the experi-
ments at ENS, see Figures 2A and 2B in reference [5],
we predict 〈n〉 ≈ 0.14 and 0.81, respectively. These val-
ues are quite close to the ones obtained via integration or
fitting long Rabi oscillations, 0.06 and 0.85, respectively.
We made similar estimations for the experiments at NIST,
obtaining 〈n〉 ≈ 1.6 and 3.1 for the experiments associated
with Figures 2 and 3 in reference [9], to be compared with
1.5 and 2.9, respectively. Clearly, our predictions could
only be better if specific experiments are performed, aim-
ing at first and second derivatives at very short interaction
times.

It is also possible to use these integral methods to
measure second-order quadrature moments, providing in-
formation about field quadrature squeezing and entangle-
ment of a multimode field. We will use a resonant two-
photon JC Hamiltonian that reads

H2JC = �g(σ†a2 + σa† 2) (17)

in the interaction picture. This nonlinear interaction has
been realized experimentally in the context of microwave
CQED [10] and trapped ions [9]. Our aim, here, is to mea-
sure expectation values of squared quadratures,

〈X2
φ〉 =

1
4

+
〈n〉
2

+
1
4

∞∑

n=0

√
(n+ 1)(n+ 2)

× (
e2iφρn,n+2 + e−2iφρn+2,n

)
, (18)

〈Y 2
φ 〉 =

1
4

+
〈n〉
2

− 1
4

∞∑

n=0

√
(n+ 1)(n+ 2)

× (
e2iφρn,n+2 + e−2iφρn+2,n

)
. (19)

with the help of equation (17) and the proposed integral
transform techniques. Then, in a close analogy to equa-
tion (13), now for a two-photon JC interaction, we can

calculate

P
+φ
g (τ) − P

−φ
g (τ) =

i

4

∞∑

n=0

sin(2τ
√

(n+ 1)(n+ 2))

× (e2iφρn,n+2 + e−2iφρn+2,n). (20)

With the help of equations (16), (18), and (19), and by
deriving and using the corresponding kernels, we arrive at

〈X2
φ〉 =

1
2i

(
dP

+φ
g (τ)
dτ

− dP
−φ
g (τ)
dτ

)∣∣∣
τ=0

+
1
4
d2P e

g (τ)
d2τ

∣∣∣
τ=0

− 1
4
, (21)

〈Y 2
φ 〉 =

i

2

(
dP

+φ
g (τ)
dτ

− dP
−φ
g (τ)
dτ

)∣∣∣
τ=0

+
1
4
d2P e

g (τ)
d2τ

∣∣∣
τ=0

− 1
4
. (22)

The quadrature variances (∆X)2 = 〈X2〉 − 〈X〉2 and
(∆Y )2 = 〈Y 2〉 − 〈Y 〉2 contain information about field
squeezing and can be calculated straightforwardly by us-
ing equations (11), (12), (21), and (22).

It is noteworthy to say that it is not necessary to use
a two-photon JC interaction for measuring second-order
quadrature moments. For example, it is enough to use a
two-atom probe interacting with the tested field through
a single-photon JC, whose interaction Hamiltonian reads

HI = �g[(σ†
1 + σ†

2)a+ (σ1 + σ2)a†], (23)

where the subindexes are labelling probe atoms “1”
and “2”. We consider the Bell states |φ+

θ 〉 = [|g1g2〉 +
eiθ|e1e2〉]/

√
2 and |φ−θ 〉 = [|g1g2〉 − eiθ|e1e2〉]/

√
2 as two

probe initial states, and in both cases we measure |ψ+〉 =
[|g1e2〉 + |e1g2〉]/

√
2, obtaining

P
φ+

θ

ψ+ (τ) − P
φ−

θ

ψ+ (τ) =
1
2

∞∑

n=0

√
(n+ 1)(n+ 2)

2n+ 3

× sin2(
√

2τ
√

2n+ 3)(eiθρn,n+2 + e−iθρn+2,n). (24)

From this expression, and following similar steps to pre-
vious derivations, it is possible to deduce

〈X2
θ 〉 =

1
8

(
d2P

φ+
θ

ψ+ (τ)

d2τ
− d2P

φ−
θ

ψ+ (τ)

d2τ

)∣∣∣
τ=0

+
1
4
d2Pg(τ)
d2τ

∣∣∣
τ=0

− 1
4
, (25)

〈Y 2
θ 〉 = −1

8

(
d2P

φ+
θ

ψ+ (τ)

d2τ
−
d2P

φ−
θ

ψ+ (τ)

d2τ

)∣∣∣
τ=0

+
1
4
d2Pg(τ)
d2τ

∣∣∣
τ=0

− 1
4
. (26)

Note that the required Bell states and the measurement
procedure have already been implemented in the lab in
the case of CQED [11] and trapped ion [12] set-ups.
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The formalism for measuring squeezing can be gen-
eralized to a two-mode field (or more), providing us with
entanglement information. Accordingly, we define the two-
mode quadratures as

Xφ = Xφ1 +Xφ2 =
1
2

2∑

j=1

(a†je
−iφj + aje

iφj ), (27)

Yφ = Yφ1 + Yφ2 =
i

2

2∑

j=1

(a†je
−iφj − aje

iφj ), (28)

where j labels modes “1” and “2”. The quantities 〈Xφ〉
and 〈Yφ〉 can be easily calculated and, here, we will con-
centrate on the second-order quadrature moments

〈X2
φ〉 = 〈X2

φ1
〉 + 〈X2

φ2
〉 + 2〈Xφ1Xφ2〉 (29)

〈Y 2
φ 〉 = 〈Y 2

φ1
〉 + 〈Y 2

φ2
〉 + 2〈Yφ1Yφ2〉. (30)

In these expressions, we define 〈Xφ1Xφ2〉 = 〈A〉/2+〈B〉/2,
〈Yφ1Yφ2〉 = 〈A〉/2 − 〈B〉/2, with

A = a†1a2e
−i(φ1−φ2) + a1a

†
2e
i(φ1−φ2), (31)

B = a†1a
†
2e

−i(φ1+φ2) + a1a2e
i(φ1+φ2). (32)

Single-mode quantities 〈Xφi〉, 〈Yφi〉, 〈X2
φi
〉 and 〈Y 2

φi
〉, can

be determined using two-level probes as it was shown
above. Therefore, the main issue is to calculate the expec-
tation values of A and B, which describe correlations be-
tween modes 1 and 2. It has been shown, theoretically [13]
and experimentally [10], that the two-photon probe-field
interaction Hamiltonian

HA = �g(σ†a1a
†
2 + σa†1a2) (33)

can be engineered and controlled. If the probe is prepared
initially in the superposition states, |+φ〉 or |−φ〉, with
φ = φ1 − φ2, we can calculate

P+
e,A(τ) − P−

e,A(τ) =
i

2

∞∑

n1,n2=0

sin(2gτ
√
n2(n1 + 1))

× (e−iφρn1,n2;n1+1,n2−1 + eiφρn1+1,n2−1;n1,n2), (34)

from which we can derive

〈A〉 =
i

g

(
dP+

e,A(τ)
dτ

− P−
e,A(τ)
dτ

) ∣∣∣
τ=0

. (35)

Similarly, and by using the Hamiltonian

HB = �g(σ†a†1a
†
2 + σa1a2), (36)

we can deduce

〈B〉 =
i

g

(
dP+

e,B(τ)
dτ

− P−
e,B(τ)
dτ

) ∣∣∣
τ=0

. (37)

In consequence, we can also estimate two-mode field vari-
ances (∆X)2 and (∆Y )2 in terms of measurable probe
observables. Furthermore, by using the same approach,

we can compute the variances of EPR-like operators

u = a0X1 − c1
|c1|

1
a0
X2, v = a0Y1 − c2

|c2|
1
a0
Y2, (38)

where a0, c1 and c2 are constants. For example, it was
shown in reference [14] that a two-mode Gaussian state ρ is
separable if, and only if, 〈(∆u)2〉ρ+ 〈(∆v)2〉ρ ≥ a2

0 +1/a2
0.

In summary, we have shown how expectation values of
quadrature field operators can be measured by means of a
two-level probe, helped by a practical integral transform
method and without the necessity of full state reconstruc-
tion. Surprisingly, all relevant information is contained in
first and second derivatives of measurable probe observ-
ables at interaction time τ = 0, making unnecessary long
range probe measurements and minimizing decoherence
effects. Also, we showed that a similar technique allows to
measure second-order quadrature moments and variances,
that is, squeezing and entanglement. These results allow
us to conjecture the possibility of realizing full state re-
constructing with “instantaneous” measurements that are
robust to decoherence.
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